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PRETACE 

The body of t h i s  repor t  represents  a complete review of t h e  e f f o r t s  of 

the  Syracuse University research program from t h e  ea r ly  1960% t o  t h e  present 

on adhesion i n  meta l l ic  systems. ?%is repor t  i s  divlded i n t o  th ree  sect ions;  

t h e  first and second were presented as publ icat ions(  J. Adhesion,l, 142-156 

(1969) and li 157,*1969)) during t h e  past  year and represent a consis tant  l i n e  

of ana lys i s  of me ta l l i c  adhesion data (pa r t  1) and a re f ined  experimental 

technique (paPt 2 )  which provides data i n  support of t h e  ana ly t i ca l  approach. 

Both of these  papers have appeared previously i n  

a somewhat l e s s  re f ined  condition. 

NASA semi-annual repor t s  i n  

The t h i r d  sec t ion  cons is t s  of a Master's t h e s i s  by M .  T s a i  which considers 

t he  e f f ec t s  of t h e  spec i f ic  contaminants hydrogen and hydrogen ions on t h e  

adhesion of u l t r a  pure i ron  (8 ppm carbon). The results of t h i s  study provide 

strong evidence t h a t  hydrogen i s  adsorbed on an i ron  surface as a conductive 

f i l m  which does not i n h i b i t  t he  cold welding of i ron.  This i s  i n  d i r e c t  con- 
1 6 

- 
trast t o  the  behavior of oxygen and nitrogen which do ac t  as a b a r r i e r  t o  ad- 

hesion, 

hesion process. 

drawn from t h i s  pa r t i cu la r  study, t he  relevance of t h e  e f f ec t s  of hydrogen 

on t h e  adhesion of i ron  t o  t h e  mechanisms of organic lub r i ca t ion  i n  such 

systems appear t o  be most Gignificant. 

follows : 

Hydrogen ions (1 Kev) a l so  provide a s ign i f i can t  barrier t o  t h e  ad- 

Although severa l  other  very in t e re s t ing  eonclQsions may be 

The f a c t s  bo be considered are as 

1. The presence of an adsorbed hydrogen l aye r  on me ta l l i c  i ron  does 

reduce t h e  a b i l i t y  of t h e  two surfaces  t o  form an adhesion junction 

of a s t rength  equivalent t o  t h a t  of atomically clean i ron .  
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2.  Oxygen adsorbed t o  t h e  ex%ent of a monolayer or  more i n  a s imi la r  

system es tab l i shes  no adhesion bond of comparible s t rength  unless 

severe mechanical o r  thermal energy i s  developed i n  t h e  in te r -  

f a c i a l  region. 

Atomically c lean i ron  surfaces a t  room temperature are capable of 

c a t a l y t i c a l l y  cracking organic molecules which provide an excess 

of hydrogen (organic source can provide up t o  75 atomic % hydrogen). 

(P. G. Wright, P. 6, Ashmoreland, C. K e m b a l l ,  Trans. Faraday Soc., 

3. 

- 54, 1692 (1958) I )  

4. Qual i ta t ive  observation: meta l l ic  adhesion of u l t r a  pure i ron  i s  

not inh ib i ted  i n  t h e  presence of methane t o  10-3Torr. ( I n t e r n a l )  e 
_I 

5.  Qualitative observation: mass spectrographic evidence suggests 

t h a t  t h e  oxide f i l m  on an u l t r a  pure i ron  surface can be removed 

a t  temperatures below 2OO0C with a molecular beam of methane re- 

s u l t i n g  i n  60 and H20 as products. ( I n t e r n a l ) .  

By using these  basic  observations and some of t h e  general observations 

regarding the  chemistry of lubr ica t ion  reviewed recently" by R. S, Fein"" 

l e t  us consider what appears t o  be a very important equilibrium reac t ion  

i n  lubr ica ted  systems : 

2 H+ + OH- H2° 

or i n  t he  presence of a f r e e  i ron  surface 

% "Chemistry i n  Concentrated Conjunction Lubrication" presented before the  
NASA Symposium "In terd isc ip l inary  Approach t o  t h e  Lubrication of Con- 
centrated Contacts Ju ly  1969 e 

%* Texaco Inc. ,  Chemical Research, Beacon, New York. 



iii 

Then by applying observation 1 and 2 above and the  expectation t h a t  i n  a 

ducing system, i . e .  and excess of hydrogen, adhesion i s  high which i n  

w i l l  increase wear r a t e s  and f r i c t i o n  coef f ic len ts  or conversely i n  an oxi 

ing system low adhesion is expected or low f r i c t i o n  coeff ic ients  and wear, 

we may examine the  e f fec t  of t he  var ia t ion  o f t k o s e  chemical agents which w i L l  

lead t o  an equilibrium s h i f t  favoring oxidizing or reducihg conditions. 

The e f f e c t  of a va r i a t ion  of humidity, on the  wear of steel. exposed t o  cetane 

or cetane plus 0.43% Stear ic  acid (cf Fein's  report ,  Figure 6 )  serves as an 

excellent example. A s  t he  humidity increases i n  t he  presence of the  acid 

additive, wear a l so  increases which i s  possible due t o  the  presence of an 

excess of hydrogen ions from the  acid molecule. Without acid,  on the  other  

hand, t h e  wear reduces d r a s t i c a l l y  as the  humidity i s  increased. On the  

basis of t he  equilibrium equations above t h e  fqrmer case ( w i t h  ac id)  sh i f t s  

the  water equilibrium such as t o  reduce the  a v a i l a b i l i t y  of oxygen (oxide ion)  

and the  l a t t e r  s h i f t s  t o  increase the  a v a i l a b i l i t y  of oxygen. 

the  hydrogen concentration appears t o  de 

I n  each case 

the  control l ing t a c t a r .  

Examine a l s o  the  case of su l fu r  as an EP agent. Recen"t evidence ( c f .  

Fein's  r epor t )  shows tha t  su l fu r  apparently does not ac t  i n  the  film as an 

i ron su l f ide  t o  reduce wear. Again consider t he  water equilibrium i n  the  

l i g h t  of the  p o s s i b i l i t y  tha t  a f r e e  i ron  surface can c a t a l y t i c a l l y  produce 

H2S which would tend t o  s h i f t  t h e  H20 equilibrium such tha t  more oxygen 

atoms a r e  avai lable  f o r  film regenera 

Obviously, t oo  much water w i l l  i n i t i a t e  corrosion s ide  reactions pa r t i cu la r ly  
- 

i n  t he  presence of hydrogen ions. 

Further support f o r  t he  proposed mechanism l i e s  i n  the  energy l eve l s  of 

the following s e r i e s  of atomic bonds: 



Bond 

Fe-0 

H-0 

Fe-S 

H-C 

H-S 

c-0 

Fe-H 

For example, " 

i v  

' 'Bond Strength (Kcab'mole) 

98 

102 

78 

80 

82 

257 

32 

i s  evident t h a t  t he  competition for  oxygen betws ir  i 

and hydrogen i s  almost equally balanced unless an excess of hydrogen is  present 

s ince an ex t ra  energy w i l l  be gained by (Fe-H) formation as  wel l  as (H-0) 

formation. The competition i n  an excess of sulTur w i l l  favor (Fe-0) s ince 

the  excess hydrogen w i l l  be consumed i n  H-S formation s ince (Fe-S) i s  much 

smaller than (Fe-0). Obviously, carbon i n  t h e  system i s  removed by oxygen 

which aids i n  the  formation of hydrogen and t h e  cracking of t h e  organics. 

The use of s ing le  bond energies f o r  comparison was  f e l t  t o  be va l id  on the  

basis that  the  s u r f i c i a l  react ions involved i n  lubr ica t ion  which are under 

consideration are not unlike those which a r e  involved i n  the  exchange . 

chemistry of ca t a lys i s .  

and formations may be considered as un i t  processes when regarding acsurface 

react ion rather than becoming involved with j u s t  t h e  s t a b i l i t y  of t h e  f i n a l  

products which could we invoive secondary - react ion s teps .  

In  ca t a lys i s  t he  overa l l  summation of bond f rac tures  

Although t h e  author does not profess t o  be endowed with a breadth of 

knowledge i n  lubr ica t ion  chemistry, these f e w  points  and t h e  supporting 

evidence: 
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1. The presence of oxygen extends tlie seizure 1 i m i l ; s  when f a t t y  acids 

or E P  agents are involved. 

Similar i s  t r u e  fo r  most organics (within l i m i t s ) .  2. 

3. Organic wear products are usually shturated,  hydrocarbons 'men though 

unsaturated o l e f in i c  and aromatic hydrocarbons are used as lubricants .  

The ferrous state i s  a common wear product (highly reducing system). 4. 

suggest tha t  a strong l i n e  of consistent reasoning i n  t h e  chemistry of lubrica- 

t i o n  can be developed from an understanding of t h e  s t a t i c  adhesion phenomena 

i ron  couples. 

It i s  strongly recgmmended; therefore,  t h a t  t h e  cursory evidence from 

lubr ica t ion  research suggested above be examined i n  d e t a i l  t o  see i f  broad 

support f o r  the proposed mechanism i s  developed. If t h i s  i s  t h e  case, lubri-  

cat ion chemistry as wel l  as addi t ive chemistry and the  r e l a t i v e  e f f ec t s  on 

wear and f r i c t i o n  might simply reduce t o  a de ta i led  understanding and control  

of the  reac t ions-ef fec t ing  t h e  presence of oxygen i n  t h e  in te r face  system, 
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ABSTRACT 

Metall ic adhesion brought about through the normal compression of two real 

surfaces i s  considered. The growth of t he  real area of contact caused by t h e  

impressed load r e s u l t s  i n  t h e  p l a s t i c  deformation of a spe r i t i e s  even before 

p l a s t i c  macro-deformation is  i n i t i a t e d ,  The s i z e  d i s t r ibu t ion  of t h e  asperi-  

t i e s  is  Gaussian, hence some contact points supporting t h e  load w i l l  have ex- 

perienced heavy deformation while others  may have only received weak e l a s t i c  

in te rac t ions ,  

high adhesion s t rengths  has been shown t o  be a function of t h e  degree of sub- 

strate deformation i r respec t ive  of" the amount or t he  character of t he  con- 

taminating l aye r ,  The mechanism o f  metal l ic  adhesion, therefore ,  is d i r e c t l y  de- 

The rate of d ispersa l  of t he  contaminant ba r r i e r  which inh ib i t s  

pendent on the avai lable  energy Inpll+s t o  -the interface,  e , g o ,  mechanical,,thema1, 

e tc . ,  which can br8ing about complete d ispersa l  of t h e  in t e r f ac i a l  contaminants, 

A t  normal compressive loads,  when t h e  r e a l  a rea  of contact is  s m a l l  compared 

t o  t h e  nominal area of contact,  t h e  system must be considered a multipoint 

contact problem w i t h  t he  resis tance t o  f rac ture  of each point contact dependent, 

on t h e  p r io r  h i s tory  of t h a t  point ,  
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The extent  of t h e  open literature directed toward examining t h e  var iab les  of 

what has come t o  be known as metal l ie  adhesion has reached ra ther  s i g n i f i c  

proportions as indicated by some recerit reviews on t h e  sub&& (1-7) A c r i t i -  

c a l  examination of these presentations,  however, immediately exposes an in t e re s t -  

ing s i tua t ion .  It appears as if each experimenter OF technique, s ince each 

school seems t o  have an unique experimental approach, produces data and of ten 

complete in te rpre ta t ions  which do not appear stmply consistent with those con- 

clusions of h i s  colleagues, The s i tua t ion  i s  immediately evident i f  one were 

t o  examine the data and conclusions of Sikorski (4) w'ho studied t h e  adhesion 

of metals using "in air" experiments, and those o f  Buckkey (8)  who generally 

uses u l t r a  high vacuum techniques. The conelusions of each, fo r  t he  most 

pa r t ,  a r e  s i m i l a r .  The experimental procedures, however, a r e  s o  rad ica l ly  

d i f f e ren t  t h a t  one hesitates t o  es tab l i sh  a l i n e  o f  consistency between the  

two, 

var iables  of t he  phenomena of metal l ic  adhesion i n  a most general fashion, COY- 

The purpose of t h e  following discussion is  t o  examine the  per t inent  

r e l a t e  these parameters with current invest igat ive work and to  es tab l i sh  a 

set of boundary conditions on f"u-ture analyses of s i m i l a r  da ta ,  The experimen- 

t a l  paper which follows provides one expeyimental a t tack  which holds con- 

s iderable  promise i n  the  ident i f ica t ion  of some of t h e  var iables  which w i l l  

be c i t e d  herein.  

Two metal l ic  surfaces brought i n t o  physical contact are usual ly  s a i d  t o  

experience "metallic adhesion" i f  an observable net, t ens i l e  load is required 

t o  separate t h e  joined system ( 7 ) .  The magnitude of metal l ic  adhesion i s  de- 

pendent on the  physical and chemical propert ies  o f  the  metals (9-12), t h e  

nature and extent of loading (1) and t h e  charac te r i s t ics  of the contaminant 
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l a y e r s  present on a l l  but atomically clean metal surfaces  (12), 

t h e  contacting process involves t h e  e l a s t l c  and p l a s t i c  deformation of surface 

a s p e r i t i e s ,  deformation o f  t h e  bulk subs t ra te ,  and t h e  rupturing an$ disper- 

sal  of contaminant surface films (13). If t h e  contaminant b a r r i e r  can be 

su f f i c i en t ly  dispersed, t h e  ensuing metal-metal contact along t h e  in t e r f ace  

Generally, 

r e s u l t s  i n  a welded junction, t h e  t e n s i l e  s t rength  of' which may approach t h a t  

of t h e  bulk metal ( 7 ) +  The conclusion t h a t  similar metal couples weld under 

near zero normal loads providing both surfsces  are atomically clean has been 

well  accepted i n  adhesion literature (7,141 and would be predicted from u l t r a  

high vacuum epitaxy s tudies  using low energy e lec t ron  d i f f r ac t ion  equipment (lg), 

adsorption s tudies  (16) and other invest igat ions 

Adhesion s tudies  which have involved de l ibe ra t e  gaseous contamination, e .,g e , 
c f .  Gilbreath (171, from a f r ac t ion  of a monol8yer t o  ambient atmospheric con- 

d i t i o n s  present an ana ly t i ca l  problem which I s  most complex. Very simply, t h e  

mechanical compressive forces producing physical contact through a spe r i ty  de- 

formation with or without subsequent bulk substrate aeformation can a c t  t o  dis-  

perse t h e  contaminant b a r r i e r  i n t o  an Inef fec t ive  state,  which permits metal- 

metal contact regions t o  be established which i n  tu rn  resist t e n s i l e  f r ac tu re  

on unloading. The d is rupt ive  mechanical forces  ac t ing  within t h e  i n t e r f a c i a l  

zone; o r  more general ly ,  t h e  mechanical work imparted t o  t h e  in t e r f ace  is  only 

one of several energy t r a n s f e r  mechanisms which can provide contaminant 

barrier d ispersa l .  FOP example, increased thermal energy could cause evapora- 

t i o n  or disso lu t ion  of t h e  contaminant layer ,  or shock wave energy e i t h e r  from 

explosive impact or  an u l t rasonic  source could a l s o  a c t  as energy inputs  which 

could promote contaminant d i spe r sa l  along t h e  in t e r f ace ,  Since t h e  contaminant 

l aye r  i s  developed by t h e  mechanisms of adsorption, stlrrace creep o r  bulk 



diffusion to the surface, the energy inputs to the inte 

dispersal may a lso  enhance the rate of contaminan 

consideration of metallic adhesion, therefore, the system must 

a degree of contamination which does not exceed that of a nominally clean su 

face exposed to ambient conditions, 

be considered as the analysis becomes more complex, 

Specifically lubricated systems wi 

Of the various modes of 

energy inputs to the interface only noma1 compressive loading at room tempera- 

ture will be considered. 

The description of metallic adhesion phenamena in real systems under bulk 

compressive loads corresponding to less than a 10% deformation of the massive 

coupled system requires a clear description of the micro-topography of each of 

the two free surfaces before contact, The description is necessary to provide 

a definition of the real area of contact relative to the massive system geo- 

metry. 

a distribution function, the exact fom of which depended on the prior history 

This has been presented recently by Greenwood and Williamson (13) as 

of the surface. The macro-radii of curwture sf the surfaces tnust also be con- 

sidered, As has been suggested by many authors, cf, a recent review by Bowden 

and Tabor (191, a reasonable surface roughness model consists of a large dia- 

meter sphere contacting a flat or second sphere upon which are superimposed 

asperities the size and shape of which are dependent on the surface finishing 

ilized before contact, For example, metallographic polishing 

the harder metals may result in a hill and valley contour in 

1-valley depth is less than a micron and the peak to peak distance 

ge of 10 microns. The consequences which result when two such 
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nominally f l a t  surfaces are brought i n t s  physical e m t a c t  under normal load have 

been reviewed by Greenwood and Williamson (131, Greenwood (18), and Kragelsky 

e t  a l ,  (20) .  

f i c  load i s  t h a t  t h e  highest  of t he  a spe r i t i e s ,  vhieh can be represented by a 

Gaussian d i s t r ibu t ion  of heights,  w i l l  y ie ld  u n t i l  a suf f ic ien t  number of asperi-  

t i es  have been deformed t o  accept t h e  impressed load, 

s i z e  of t h e  a spe r i t i e s  such deformation on a micro-scsle w i l l  occur w e l l  before 

t h e  onset of what i s  c l a s s i ca l ly  considered bulk p l a s t i c  deformation, Since 

The generally accepted model f o r  s u f s c e s  i n  contact under a speci- 

Due t o  the  very small 

the  uniqueness of t h e  surface asperi ty  configuration i s  retained u n t i l  ra ther  high 

compressive forces  are rea l ized  (21) e , g o ,  some (22) have suggested t h e  range of" 

at  least 10% bulk deformation f o r  flat surfaces,  t he  r e a l  area of t he  in t e r -  

f a c i a l  system w i l l  consis t  of islands o r  Y a r i o u s  sizes surrounded by regions of 

noncontact. The real area of physic81 @onts-.t and t h e  nominal area of contact 

are, therefore ,  qui te  d i f fe ren t  fo r  a l l  but t h e  most severely loaded systems, 

Since surface mass transport, i n  the f o m  of" p l a s t i c  deformations must be involved 

during loading, the var ia t ion  of r e a l  area with load t i m e ,  cog. creep, w i l l  a l s o  

be involved i n  t h e  expansion of t h e  r e a l  contact area (23 1 

contact w i l l  then be a function of t h e  nat,ure o f  the  metal, impressed load, t i m e ,  

and temperature; t h i s  has been substantiated by hardness measurements (24) and 

The real area of 

e l e c t r i c a l  contact s tudies  (25)  Without. question the  most important aspect of 

t he  study of metal l ic  adhesion is  t h e  def in i t ion  of" t he  real area of contact 

with respect t o  i t s  magnitude and cons t i tu t ion  s ince t h e  f rac ture  s t rength of 

t h i s  adhesion junction, t h e  only measure of metal l ic  adhesion s t a b i l i t y ,  i s  de- 

pendent on t h e  real s t r e s ses  developed within t h i s  real area during t h e  unload- 

ing process, 
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As is indicated in a review of the recent literature (1-7) most adhesion 

strength data which has been presented in the literature have involved only 

reference to the fracture load per unit of nominal area of' contact, 

therefore, consider this aspect in more detail, 

Let us, 

The process of adhesion may be considered as being comprised of two steps: 

't'wo free surfaces are brought into physical ecintact and subgected to a com- 

pressive load; and then the applied load to the system is removed, possibly to 

some tensile load representing a nominal adhesion Junction strength. The entire 

process is directly dependent on the nature and extent of the real area of con- 

tact and the fracture stresses developed therein, 

Numerous suggestions based on macro-observations have been presented which 

relate the real area of contact ( A )  to the impressed load (W) (19, 22, 231, 

In most general form this can be given as 

A = ( k I x ~  

where k and x are related to the particular deformation process involved in ex- 

panding the load-supporting area as the load is increased or the time is extended 

at a fixed load (creep), 

the process,, Under lightly loaded conditions, e,g, less than the bulk com- 

pressive yield point of the material involved in contact, such an area expansion 

process will involve a number of individual asperities which will have a distri- 

bution in size and position along the contacting interface as well as a rela- 

Thus, the value of & is directly related to %through 

tionship to massive geometrical effects such as the overall relative radii of 

curvature of the two macroscopic systems., Consequently as the load i s  impressed, 
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t h e  loading conditions on each individual asper i ty  and r e l a t i v e l y  between ad- 

jacent a spe r i t i e s  w i l l  be unique, t h a t  is ,  a t  equilibrium some asper i ty  contact 

points  may have been subjected t o  heavy p i a s t i c  deformation while others may 

have only experienced a low l e v e l  e l a s t i c  contact. 

expression f o r  t h e  real area, therefore ,  ought t o  be a summation of t h e  contr i -  

butions from each asper i ty  i n  the  contact system wfth regard t o  each asper i ty  

(i) i n  t h e  in te r face  system and the respective pos i t ian  f j )  of t h a t  asper i ty ,  

A more complete general  

Expl ic i t  i n  t h i s  equation are  two necessary assumptions which appear 

reasonable but which have not been j u s t i f i e d  experfmentally. F i r s t l y ,  it i s  

assumed t h a t  each asper i ty  deformation i s  a un i t  process, i o e o  not r e l a t ed  t o  

the adjacent asper i ty  and as such, and follawa a simple power l a w  of deformation 

similar t o  t h a t  observed i n  macro-systems 

presentat ive of one u n i t  process and not generated t h o u g h  an averaging process 

of s ign i f icant ly  d i f fe ren t  micro-processes, The second assumption which i s  

necessary and ye t  unproven, i s  that  t he  representat ive equation i s  constant 

throughout an asper i ty  deformation process i r respec t ive  of' t he  percent deforma- 

t i o n  which i s  experienced by t h a t  unit. process 

surfaces cannot be generated i n  dimensions below micro-inches on real surfaces,  

it i s  unl ikely t h a t  proofs w i l l  be presented i n  the immediate future.  

sequently, we must r e l y  on mzcro-scale observ3tions t o  provide a possible path 

Eqaatfon (I), therefore ,  is re- 

Since geometrically reproducible 

con- 

f o r  in te rpre ta t ion ,  A s  an example of" t he  problem facing the  analyst ,  l e t  us 



consider a simple hardness experiment i n  which the  

. sent an asper i ty  u n i t  process, If the  load (W) i s  

indenter i s  assumed 

suf f i c i en t  t o  

p l a s t i c  t ranspor t  under the  indenter,  t he  progected area (A  ) has been shown 

(26) t o  be approximately 
P 

w" 
P 3y 

A t -  (3 )  

where (m) i s  a mater ia l  constant very nearly equal t o  one and (Y) the  y i e ld  

point of the  material, 

macro-approximation, but not necessar i ly  va l id  POP a similar micro-process, i s  

The reasonabiy valid assumption neees$arqy for t h i s  

t h a t  surface contaminants w i l l  not e f f ec t  t he  p l a s t i c  flow process, Such i s  not 

t he  case on two accounts; f irst ly,  the  apparent; progected a rea  represents only 

a f r ac t ion  of that r e a l  area suppo-rting the load due t o  the  e f f ec t  of a spe r i t i e s  

as pointed out by Williamson (21). 

ing along the  in te r face  of t h e  indenter which are necessaRy t o  expand t h e  a rea  

w e  most s ens i t i ve  t o  the lubr ica t ive  propert ies  of the  contaminants which a id  

Secondly, .the very flow processes occur- 

or  r e s t r i c t  the  material flow along the  in te r face ,  The phenomena has been 

c l ea r ly  demonstrated during the  observation o f  the s e n s i t i v i t y  of hardness 

measurements t o  surface lubr icants  (27 1 Gane e t  a1. (28) a l so  has shown tha t  

our knowledge of the  mechanical propert ies  of metal suyfaces on a micro-scale 

i s  not s a t i s f ac to ry .  

Although the  presentation of Equation ( 3 )  r e s t s  

assmptions regarding the  behavior of' the  Pndividual 

fo r th  t h e  recognition that physical contact behavior 

on some ra the r  nebulous 

asperi ty ,  it does br ing 

is t he  r e s u l t  of a multitude 
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of such in te rac t ions  w i t h  p l a s t i c  defomaticns ranging from near 100% t o  t h  

near force less  contact.  

i n  a r a t h e r  complex s t a t e  of s t r e s s  which may per u n i t  volume be resolved i n t o  

two components: 

the  flow s t r e s s  i n  a un i t  volume of the mater ia l  i s  exceeded t h a t  un i t  volume 

More spec i f i ca l ly ,  t h e  in te r face  system has b 

r the  applied s t r e s s  ( aa ) ,  and the res idua l  s t r e s s  (u ) e  As 

w i l l  deform p l a s t i c a l l y ,  

absolute cor re la t ion  of adhesion data w i t h  atGmic propert ies ,  s t ruc ture  of t he  

mater ia l ,  o r  defect mechanics requires a rather adventuraus extrapolation, if 

any but t he  most gross generalizations aye in>.olared, 

I n  an implici t  manner t h e  model suggests tha t  an 

The ins t an t  tha t  any f rac t ion  of t he  compressive load i s  removed from t h e  

system, each un i t  of a rea  supporting tha t  load w i l l  be subjected t o  a new s t r e s s  

r e l a t i v e  t o  t h e  f r ac t ion  of t he  applies load removed from tha t  un i t  a rea  and 

a l so  the  a v a i l a b i l i t y  of res idua l  s t resses  adJacent Lo the  un i t  a rea  under con- 

s idera t ion ,  

some c r i t i c a l  f rac ture  s t r e s s  (u 1 t he  uni t  area w i l l  separate,  i.e. permit 

If such a un i t  area i s  exposed t o  a t e n s i l e  s t r e s s  which exceeds 

c 

crack propagation, which i n  t u rn  w i l l  re l ieve a portion of" the  accumulated 

s t r e s ses .  The condition f o r  f r ac tu re  per unit area can be presented as 

( 4 )  r 
(I@ < aa + a 

Under r e l a t i v e l y  l i g h t  contact loads, i , e ,  very s m a l l  bulk deformations, much 

of t he  real contact area w i l l  be subjected t o  r a the r  severe s t r e s s  concentra- 

t i o n s  of nearly i n f i n i t e  sharpness due t o  the  presence of voids along the  in- 

te r face .  A carefu l  s t r e s s  analysis of the system must contend w i t h  t h i s  f ac to r  
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The magnitude of the critical fracture stress is related directly to the physical 

properties of the material through wh9ch the crack must propagate, and as a con- 

sequence is extremely sensitive to the structure and temperature of this phase 

as was emphasized by Gilman (301, 

of a pure metallic junction can be compared to that of a clean grain boundary 

within the bulk metal while critical ffactwe stress of' a Junction completely 

contaminated with an organic oil ought to be compared to that of the organic 

material and not to that of a metal, A more extPeme situation can be envisioned 

in the case of very lightly loaded regions along the interface between two glass 

plates in which the adsorbed water i s  not entirely dissipated in the compression 

process. In conclusion, the unit area resisting fracture can vary from some 

For example, the critical fracture strength 

value approaching the bulk strength of the metal involved in the metallic couple 

to near zero depending on the interfacial material and the degree of its dis- 

persion. Furthermore, fracture of a small unit area can occur even though the 

overall system is still in a state of cornpression as long as the corresponding 

applied load is less than the maximum load experienced by the system during the 

compression mode of the adhesion process, 

letion of applied load only effects (a") in a unit asperity process, or micro- 

unit volume adjacent to the interface. Under certain circumstances, the residual 

stresses, which to a degree are fndependent of the applied stresses, could effect 

a high tensile stress in a micro-unit volume even though other regions of the 

contact area are bearing the compressive load, 

For example, the addition or de- 

Such was cleazly identified by 

Bowden and Tabor (1) in their disdussions of "released elastic stresses" during 

hardness measurements,, 



Again, t h e  most important parameter of” the process is t he  def in i t ion ,of ’  t h e .  

un i t  area over which t h e  c r i t i c a l  f r ac tu re  s t r e s s  must operate and again-some ’ 

r a the r  extreme simplifying assumptions i n  the  model must be made since we mush 

considgr the  r e a l  contact area of a one asper i ty  contact t o  be homogeneous i n ,  

uc even though it is c lea r  t h a t  t h i s  need not necessar i ly  be the  case- f o r  

any except t be  idea l ly  clean meta l l ic  adhesion systemo 

simplifying psszunption.that t he  s t r e s s  s t a t e  f a  unique and homogeneous. within 

If we make the  f 7 r t h e r ’  

each asper i ty  contact region then we can yepresent t he  second half  of the  adhesion 

cycle as an equation based on F = u A where t h e  force (F) on the  in te r face  of 

a one asper i ty  contact is given by the  nominal s t r e s s  ( a )  per un i t  r e a l  area ( A )  

such t h a t  f r ac tu re  ensues when u 

, 

oce  I n  order t h a t  a l l  of t he  a spe r i t i e s  in- 

volved i n  one aahesion in te r face  a re  conpidered, a summation can again be ap- 

p l ied  f o r  t he  t o t a l  force (FT) 

n 
F(T) ‘i AiJ 

where ui is t h e  e f f ec t ive  s t r e s s  developed on the  f t h  asper i ty  junction wi th  
* 

a r e a l  area A” and t he  total!’force represents t he  e f f ec t s  of‘ n junction$, The i d  
f r ac tu re  of tho i t h  junction w i l l  occur when some c r i t i c a l  stress ($) is ex- 

ceeded i n  that”micro=volume of the  Junction which w i l l  permit a crack t o  aove 

thus releasing the  sccumulated applied (era) end t h e  res idua l  s t r e s ses  (or )  as 

indicated i n  Equation ( 4 )  The necessity f o r  studying the  f r ac tu re  process on 

a eingle  asper i ty  baeie becomes evident, i f  one considers t h a t  t h e  r e a l  
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area of contact i s  made up of contact pctints i n  varying degrees of deformation 

and fu r the r  that the contaminant d i spersa l  e f f ec t  resu l t ing  i n  a metal l ic  ad- 

hesion bond s t rength between these two points  can be presenteh as a function 

of t h e  contaminant as w e l l  as the  percent deformation t o  which t h e  metal l ic  

system has been subjected,  

an asper i ty  undergoes gross deformation i n  a surface system while subjected 

t o  compressive loading and it is through jilsz such a process t h e  eontaminant 

b a r r i e r s  to adhesion are  removed, t he  examination of bulk dispersa l  mechanisms 

Since the re  i s  no d i r e c t  e-rfdence on precisely how 

1 

ought t o  provide some ins ight ,  The roll-bonding s tudies  by Milner e t  a l ,  (3)  

serve as a simple example. Such adhesion szudies are s igni f icant  only i f  we 

psesume that similar processes could be Dperakive at  the scale  of a spe r i t i e s ,  

The Milner experiments involved the  r o l l i n g  of t w o  slabs of metal i n  a i r  t o  

some degree of bulk deformation and then t e s t i n g  the in te r face  bond i n  shear,  

In  t h i s  case our assumptions a re  probably more nearly correct  s ince for  t h e  

most pa r t  the  real a rea  of contact i s  expanded under conditions of constant 

a v a i l a b i l i t y  of contaminants and chemical react ion r a t e s  tending t o  disperse 

the  oxide contaminant layer .  

Milner from roll-bonding s tudies  of various metal couples i s  presented i n  

Figure 1. 

data  were l e f t  out here for convenience, 

f i can t  points  regarding one possible mechanism fo r  the  dispersion of oxide films 

between the two metal surfaces.  F i r s t l y ,  l e t  us consider t h e  case of aluminum 

i n  which t h e  var iables  of temperature, r o l l i n g  speed and surface structure are 

held constant. 

A portion of t h e  voluminous data  developed by 

The numerous data  points  del ineat ing these curves i n  the  or fgfna l  

The curves i l lustrate several signi-  

The curve indicates  t h a t  a threshold o f  about 40% bulk deforma- 

t i o n  i s  required before any bond s t rength i s  observed. Between 40-45% defor- 

mation, t h e  dispersion rate of t h e  oxide, as wel l  as t h a t  of the adsorbed gas 
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i s  qui te  rapid as i s  indicated by the  increase i n  t h e  shear s t rength of t he  

system, i . e ,  a s izeable  f r ac t ion  of t he  r e a l  s t rength of aluminum. A t  defor- 

mations grea te r  than 45%, t h e  oxide d ispersa l  process seems t o  follow a lim3tfng- 

curve which i s  representat ive f o r  t he  other metals shown, 

s t rength compares favorably with t h e  bulk m e t a l  s t rength above 80%, deformation. 

The i n t e r f a c i a l  

It i s  in t e re s t ing  t o  compare the  alumin-m curve w i t h  t h a t  of' l e aa  s ince t h e  

deformation threshold f o r  lead i s  only 8% defoda%fon ye t  lead encounters t h e  

sane l imi t ing  curve 

Cu. 

l ayer  i s  fractured (311, i . e .  deformation threshold,  which i s  dependent on t h e  

[cf. Figure  l - 0,O-A] as t h a t  experienced by Sn, A1 and 

What is suggested by t h i s  s e t  of curves i s  that a f t e r  t he  b r i t t l e  oxide 

subs t ra te  material-oxide cha rac t e r i s t i c s ,  a l imi t ing  r a t e  process of contaminant 

d i spersa l  i s  a t ta ined  which i s  dependent on the  degree and type of deformation 

and independent of the  mater ia l  which is involved, Since these systems were- 

prepared i n  a similar manner (wire brushing and severe r o l l i n g ) ,  one might 

suspect t ha t  the  l imi t ing  oxide d ispersa l  is a function of asper i ty  in te rac t ion  

( l i g h t  loads; 20% deformation) and metal flow pat te rns  along the  in te r face  

under the  severe r o l l i n g  conditions. 

ing 

I n  comparing these data with the  normal load 

in te r face  contact model under discussion, it i s  un rea l i s t i c  t o  car ry  th i s  

analogy too  far s ince i n  a simple contact process extrusion type flow, i , e ,  

p a r a l l e l  t o  in te r face ,  would not be expected t o  such a severe extent ,  IhcPther- 

more, during roll-bonding t h e  i n t e r f a c i a l  a rea  is  grossly expanded whereas i n  

normal adhesion r e l a t i v e  motion i n  the in te r face  is qui te  s m a l l .  

have c l ea r ly  examined other models of energy input,  e o g o ,  t he  deformation thres-  

Milner e t  a l .  

hold decreases with increasing temperature and extension of  t he  duration of 
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exposure to roll pressure. 

ing contaminants, e,g., the deformation threshold of aluminum was reduced to 

about 2% by brushing in medium range vacuum, 

lower deformation threshold except for magnesium which did not respond to the 

simple analysis as presented for Figure l since the limiting curve was very low, 

They have also exmined the effects of Emit- 

The sorter metals indicated a 

Although roll-bonding studies do not simply represent the state of affairs 

in a normal contact problem, they do elekrly demonstrate the contaminant 

dispersal effect that has been interJected into the contact fracture argument. 

Vacuum adhesion studies presented by Hordon 132) fn Figure 2 were obtained by 

wire brushing two small flat plates of the respective metals in very high vacuum 

(1 nTorr), subjecting the plates to near normal loading and then testing the 

welded system in tension, The data are shown as the relative strength of the 

interface bond (SR) to the yield strength o f  

nominal area of contact which is conpared to 

ratio with S The general charaezer of tahe 

predicted. For example, the natural surface 
Y' 

the material (Sy) based on the 

the normal loading force (SN) 

curves is precisely what would be 

roughness of the samples insures 

asperity interaction which will provide an exceedingly small real area of contact 

until at least a few percent plastic deformation is attained, i.eo a nominal load 

in excess of the yield point; loo on the abscissa of Figure 2. It is evident 

that normal loading does not provide the rapid oxide dispersal which accompanied 

roll-bonding experiments as indicated by the lack of a simple symmetrical lfmit- 

ing curve. 

softer metals Ni and Cu when compared to the harder metals Co, Ta, and Ti, 

Hordon also observed that by increasing the ambient temperature the bond strength 

More severe interfacial dispersing is, however, observed in the 

at a fixed load was also increased. The amount of contamination present on the 
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w i r e  brushed metal surfaces i n  u l t r a  high vacuum (Hordon) was impossible t o  

ascer ta in ;  however, t h e  degree was ce r t a in ly  considerably less than t h a t  present 

i n  t h e  roll-bonding experiments. Another importam unknown i n  t h e  analysis  of 

t h e  adhesion system i s  emphasized s ince no technique has been successfully ap- 

p l ied  t o  ascer ta in  the  exact mount,  or  character,  of t h e  contaminant phase 

avai lable  f o r  t h e  in te r rupt ion  of adhesion during the  study of in te r face  bond 

s t rength r e l a t i v e  t o  f r ac t ion  of deformation, 

Since the  real a rea  of contact formed i n  t he  contact zone during t h e  com- 

pressive mode (Equation 2 )  of t h e  adhesion t e s t  i s  iden t i ca l  t o  t h a t  operated 

upon during t h e  removal of t h e  compressive f"orce (Equation 5 )  and possibly the -  

same as t h a t  during t h e  t e n s i l e  tes t  of the adhesion Junction, t h e  t o t a l  i n t e r -  

f a c i a l  force may be wr i t ten  as:  

where k must be evaluated under t h e  ccnditions 31 x whi-.h i s  due t o  the  de- 

formation process involved dt t h e  1 ' 1 1  dspoi i t y  E'J? exampl .e ,  i f  t h e  i t'h 

asper i ty  i s  undergoing simple p l a s t i c  clef'armat,r,n i n  cumpression, we might 

1 
3Y assume ( k  = --)and (x  = 1); however, i f  t h e  i t h  asper i ty  i s  under tension 

x = 0 and k -might be assumed as a first approximation u n t i l  t he  c r i t i c a l  

stress (u ) i n  t he  i t h  asper i ty  i s  exceeded, 

t he  compressive load is  reduced inf in i tes imal ly  portions of' t he  system may be 

exposed t o  a t e n s i l e  s t r e s s  even though the e n t i r e  system is  s t i l l  considered 

as being under a compressive load, 

asper i ty  contact area exceeds the c r l t i e a l  f rac ture  s t r e s s  l o  

*max 
3Y 

C Under any circumstances when 

If the t ens i l e  s t r e s s  experienced by t h e  

c of t h e  in te r face ,  
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a crack w i l l  propagate through t h a t  region t o  re l ieve  %he in t e rna l  stress but 

a w i l l  s top when t h e  balance (a" = u + a') 1s achieved, 

The path of the crack w i l l ,  of course, follow the  path of least re- 

s i s tance  which w i l l  couple a minrmizatien of molecular bond s t rengths  with a 

maximization of regional  t e n s i l e  s t r e s s ,  The chemical composition, therefore ,  

of t he  f r e e  surfaces resu l t ing  from f rac ture  can not simply represent t h e  pre- 

contact surfaces s ince material  t r ans fe r  is  expected i n  a l l  cases. For example, 

i n  t h e  case of severely Dxidrzed me%al surfaces adhesion should be expected be- 

tween some of the  oxide pa r t i c l e s  f n  z m t a c t ;  however, on f rac ture  t h e  path of 

l e a s t  t e n s i l e  force resis tance may not inelude such an adhesion Junction, Material 

t r ans fe r  would r e s u l t .  A s i t ua t ion  qui te  s imilar  t o  t h i s  state of affairs 

w a s  c l ea r ly  described by Bowden and Tabor (1) i n  t h e i r  discussion of "released 

e l a s t i c  s t resses"  during normal hardness rneasu-?ernents Johnson and Keller- ( 9  ,lo f 

a lso  reported a similar phenomena i n  adhesion s tudies  between similar and dis- 

similar couples undef contaminated conditions,  

c If a very'weak boundary e x i s t s  a11 over the interface,  eo@; , ,  ~f is  sexy 

small, a p lo t  of  the var ia t ion  of contact area with applied load from maximum 

load t o  zero load should very newly  superimpose on the loading curve provided 

no massive p l a s t i c  flow of e i the r  system has been effected,  

provide a l a rge r  r e a l  area of contact on unloading than w a s  avai lable  on load- 

P l a s t i c  flow would 

ing depending on t h e  magnitude of res idua l  e l a s t i c  stresses i n  that  region, 

Next, l e t  us consider t he  real area of contact developed between two atom- 

i c a l l y  clean surfaces such t h a t  each contact point becomes a welded junction; 

a case which closely resembles a clean grain boundary (141, 

loading p r io r  t o  a t e n s i l e  t es t  tends only t o  s l i g h t l y  d i s t o r t  t he  t e n s i l e  

Since compressive 
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s t r e s s - s t r a in  diagram of t h e  metal under consideration, one would predic t  (14)  . 

t h a t  t h e  strefigth of each asper i ty  adhesion junction would be approximately t h a t - .  

of t h e  t e n s i l e  s t rength  of that, metal based on tha t  real area of contact ,  The 

r e l a t ionsh ip  of t he  Junction s t rength  t o  impressed load is  only through t h e  

a spe r i ty  defomation necessary t o  expand the  contact area, If, f o r  example, 

atomically c lean and f la t  surfaces  were brought into intimate contact without- 

an impressed load, t h e  junction s t rength  would s t i l l  be the t e n s i l e  s t rength  

of t h e  metal s t i l l  based on t h e  rea% conzact a rea ,  which i n  t h i s  i dea l  case 

would be t h e  nominal a rea .  

- 

Another important aspect f o r  t h e  consideration of' Equation 7 l ies  i n  t h e  

f a c t  tha t  t h e  d i s t r ibu t ion  and the  degree of contaminant d i spe r sa l  i s  a f i n c t i o n  

of t h e  degree of deformation, A s  a consequence, the c r i t i c a l  f r ac tu re  s t r e s s  

( a c )  w i l l  vary with the  contact point  area depending on the  amount and type of 

contaminant present a t  that  point  and t h e  degree cf dispersa l  experienced by 

t h a t  point  during t h e  compressfve mode, Studies directed toward t h e  evaluation 

of spec i f i c  contaminants and t h e i r  a,biliCy t o  i n t e r rup t  t h e  adhesion process 

ought therefore  t o  be conducted i n  a system i n  which rigorous control  i s  main- 

ta ined  over a l l  secondary impuri t ies ,  surface roughness, and loading-variables  

such as contact t i m e ,  temperatnre, and ra te ,  One suggested configurat ion,  (11) 

w a s  t o  evaluate Equation 6 under atomically clean conditions a t  various maxi- 

mum loads and then compare these values w i t h  those observed under one spec i f i ca l ly  

contaminated condition-maintaining a l l  o f  the  o?her variables constant i n  t h e  

tes t  system, e.g., 
I- Y 

LG *i AijJ  contaminated 

1" 'i atomically c lean 
n =  
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Such an approach and the assumption that the only change in the system is 

(oc) permits a'rather simple analysis, Extensive details of the value of 

this assumption and a detailed analysis have been presented by Westwood (33)  

The coefffeient of adhesion ( a )  was developed ill as the ratio of the 

fracture load of a nominal adhesion Junction to that compressive load utilized 

in the formatfon of the interface, The implicit assumption is that, on the 

average, the area supporting the load 1s identical to that which resists a 

tensile force to fracture the system; however, according to a more careful 

examination this is only the case when absolutely n3 contamination exists be-- 

tween two metal surfaces, The presence 3f only a fraction of a monolayer of 

conkmination on either surface immediately invakes the necessity to sum 

the varying degrees of asperity deformation necessary to generate the.real area 

or the application of a compresslve fouc i  which will generate complete'dispersal 

at a11 points. In equation fom we can use the maximum force in compression 

as the load to form the junction and Equation 6 that to cause fracture, The 

coefficient of adhesion (a), thus, takes form 

LJ - _  

The coefficient of adhesion (a), therefore, may vary  tram zero to infinity 

depending on the conditions o f  the experiment, For example, if atomically clean, 
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f la t  surfaces are brought i n t o  forceless  contact t h e  denominator approaches' 

zero and i f  any force of a t t r ac t ion  e x i s t s  between t h e  two bodies the  numerator 

has a f i n i t e  number and a approaches i n f i n i t y ,  

lubricant  reduces the  numerator t o  zero at any load or (a) approaches zero, 

Wide var ia t ions  i n  b f o r  t he  s m e  metal system t e s t e d  by d i f f e ren t  experimenters 

On t h e  other  hand, a per fec t  

under approximately the  same conditions are common, e,g.  i n  t h e  case of copper 

c f .  Buckley (34) for l a rge  c1 values and Ham (35) f o r  s m a l l  a values. The 

def in i t ion  of" an a fo r  each i t h  

a f r u i t l e s s  path because of t he  d i f f i c u l t y  i n  ascertaining e i ther  the -p rec i se  

contact or  an average 'I a l so  appears t o  be 

" 

degree of contminat ion of t h e  i t h  contact  o r  t he  t o t a l  amount of" eontaminant"- 

dispersion energy avai lable  t o  the  system necessary f o r  t he  d iss ipa t ion  of t h e  

contaminant layer  which i$ preventing the  t w o  a spe r i t i e s  from welding together,  

and establ ishing the  c1 f o r  t h a t  asper i ty ,  

I n  the u t i l i z a t i o n  of various a values as reported i n  the  l i t e r a t u r e ,  it 

would appear t h a t  for t h e  purposes of comparing data produced between u l t r a  

clean versus spec i f i ca l ly  contaminated surfaces which are produced by one 

inves t iga to r ' u t i l i z ing  the  same technique f o r  each experiment such as is-done 

i n  t h e  experimehts by Gilbreath one could assume a degree of qua l i t a t ive  

re la t ionship  between t h e  d i f fe ren t  values af w on s imilar  metal couples at 

corresponding'loads without much ei-ror, In te r re la t ing  data  from di f fe ren t  

physical  systems of study as suggested by Rittenhouse ( 3 6 )  or  those between 

diss imilar  metal couples as used occasionally by Buckley (34),  however, should 

be considered'dangerous since F and a@ a re  strongly dependent on t h e  t es t  max 

temperature r e l a t i v e  t o  t h e  absolate melting temperature, c r y s t a l  s t ruc ture ,  

cohesive s t rength,  e t c .  of t he  bulk materials as w e l l  as the  nature of the  
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contaminants and surface roughness i n  t h e  system. 

Q@t, 

The Fma values can- 

therefore ,  be r e l a t ed  since t h e  deformation mechanisms providing 

the  real  area of contact are d i f fe ren t  due t o  t h e  d i f f e ren t  modes of de- 

formation and rates of contaminant d i spersa l .  

The conclusions of t he  previous discussion can be most simply 

i l l u s t r a t e d  as a theo re t i ca l  curve of an adhesion cycle which proceeds 

from zero load contact t o  some F and then unloading the  system max 

t o  junction f rac ture  as shown i n  Figure 3. The compressive loads 

I 

Compressive 
Load 

Tensile 
Load 

Figure 3 Theoretical  loading versus area curve for massive compressive 
s t r a i n s  below the  0.2% o f f se t  point.  
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considered are below the 0.2% of f se t  yield point of t h e  material s ince 

massive s t r a i n s  serve only t h e  t ranspor t  bulk material and i n s t i t u t e  

contaminant d i spe r sa l  e f f ec t s .  The loading cycle of Figure 3 assumes 

only p l a s t i c  motion of t he  a spe r i t i e s ;  area i s  proport ional  t o  load 

i n  the  first approximation. For materials of higher y ie ld  point ,  

the case of normal loading could extend i n t o  the  region of bulk 

e l a s t i c  compressive s t r a i n  which would be represented by a d i s t i n c t  

slope change i n  t h e  0-F curve. If i n  either case, the  load a t  
maX 

w a s  re ta ined  f o r  a period of t i m e ,  creep of t he  p l a s t i c a l l y  
FmaLX 

deformed a s p e r i t i e s  would ensue. 

i n  the following paper by MeNicholas and Keller ( 12) .  

Both of these cases are described 

The release of t h e  load from point  F w i l l  produce an e f f ec t  
maX 

which i s  related d i r e c t l y  t o  t h e  amount and nature of the contaminant 

along t h e  in t e r f ace  at F 

t h i s  i n t e r f a c i a l  contaminant layer  a t  F i s  due t o  the surface 

. According t o  the previous discussion 
max 

max 

state of contamination before physical  contact and the degree of 

i ts  d i spe r sa l  during the loading process. The l i m i t s  of f rac ture  

are r ead i ly  fixed: f i r s t l y ,  if at Fmax t h e  l o w  shear s t r e s s  contaminant 

has been undisturbed, the ' 'released e l a s t i c  s t r e s ses"  w i l l  continuously 

decrease the required area t o  support the continuously reducing load, 

i . e .  path F -0 i s  followed approximately depending on the magnitude 

of the i n t e r f a c i a l  change due t o  the  p l a s t i c  s t r a i n  of the a spe r i t i e s .  

Secondly, i n  the case where the surfaces are in te r faces  are automically 

maX 

c lean or the contaminants are capable of high shear s t rength  in t e r f ace  

formation (solders  t o  rap id  set adhesives),  the release of the load 

would not r e s u l t  i n  a gross area change (FmX-FF-O) u n t i l  the  t e n s i l e  

f rac ture  stress of the system was realized. I n  th i s  case one can 
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appreciate t h a t  t h e  " e l a s t i c  stresses" are accumulated along t h e  

non-equilibrium in t e r f ace  as s tored  energy u n t i l  fracture takes  

place.  Thus, not only is t h e  t r u e  fracture s t rength  reduced t o  

some degree; but one can now envision a continuum of possible 

events between the  two l i m i t s .  

These cases are p a r t i c u l a r l y  evident i n  the McNicholas e t  a1 (12) 

paper which follows while t h e  other cases were described by Johnson 

e t  a1 ( 9 ,  IO). 

Clearly the mechanism of the d i spe r sa l  rate of the  Contaminant 

barrier t o  meta l l ic  adhesion, and i ts  balance w i t h  f i lm growth rate, 

i s  t h e  key t o  the ove ra l l  a n a l y t i c a l  problem; and u n t i l  quant i ta t ive  

s tud ies  which are i n i t i a t e d  w i t h  a known degree and type of surface 

contaminant a r e  undertaken, co r re l a t ion  of da t a  produced by one 

inves t iga tor  are not l i k e l y  t o  agree i n  de ta i l  w i t h  tha t  of another. 

Under compressive loads below the y i e ld  poin t  of t h e  mater ia l ,  

severa l  authors (2,  5, 6) have shown tha t  a monolayer of c e r t a i n  

contaminants ( 9 ,  10) emanating e i t h e r  *om the  vapor or by d i f fus ion  

from the bulk (E) can reduce the adhesion s t rength  t o  zero. 

detai l  w i t h  which the o r i g i n a l  metal surfaces ,  i . e .  p r i o r  t o  spec i f i c  

contamination, must be defined i s  established through t h i s  l imi ta t ion .  

The lack  of c l ea r  d e f i n i t i o n  of the amount and type of contaminant 

layer  present on a meta l l ic  system p r i o r  t o  study has a l s o  inhibited 

our a b i l i t y  t o  gain any ins ight  i n t o  possible cross-correlat ions 

between modes of energy inputs  fo r  contaminant despersal .  For example, 

t h e  co r re l a t ion  of adhesion data produced by the normal load contact 

methods (12) cannot be p rec i se ly  cor re la ted  w i t h  a normal contact p lus  

some f r ac t ion  of t angen t i a l  motion or t h e  comparison of normal contact 

The 
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a t  some temperature (T) with t h a t  at  (T f 500°C). 

examples could be c l e a r l y  resolved, a r a the r  s ign i f i can t  s t e p  toward 

If  both of these 

the  understanding of t h e  adhesion theory of f r i c t i o n  could be made. 
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List of Symbols: 

A 

A 

F 
P 

FT 

k 

m 

n 

sN 

sR 

W 

'max 
X 

Y 

et 

G 

a 
G 

cJc 

y. 

real area of contact 

projected area of contact 

force on asperity 

total force on contact area (A) 

constanz dependent on deformation process 

materials e 3ns tat 

number of asperity contacts 

nominal compressive stress 

nominal fracture stress 

yield stress 

impressed nomal load 

load at maximum compressive stress in adhesion cycle 

constant dependent an deformation process 

yield point 

adhesion coefficient 

total stress 

applied stress 

critical fracture stress 

G I  - residual stress 



L i s t  of Captions : 

Figure 1 Roll-bonding s tudies  of various metals i n  a i r  at room tempera- 

t u r e  ( 3 ) *  The data  are presented as %he strength r a t i o  of t h e  

in te r face  bond formed by rol.1-bonding t o  t h e  so l id  metal versus 

percent deformation, 

Variation of t h e  rel&iyJe s t rength of polycrystal l ine metals 

w i t h  t h e  degree of compression (321, 

f rac ture  s t r e s s  ( S  

Figure 2 

The r a t i o  of t he  bond 

t o  the y i e ld  s t r e s s  (Sy) i s  p lo t ted  R '  

versus the  reduced compressive s t r e s s  (S,/S,) 
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